GUÍA Nº1 "CÁLCULOS ESTEQUIOMÉTRICOS" CURSO: 2° MEDIO A – B

Nombre:		

Objetivos

- 1.- Calcular reactivo limitante y producto formado para distintas reacciones químicas.
- 2.- Calcular, a nivel teórico, el rendimiento que experimental una reacción química.

I.- DESARROLLO:

Eje: Química

Indicador de Evaluación: Realizan cálculos para determinar reactivo limitante y posteriormente calcular la cantidad de producto formado.

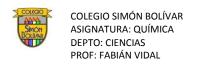
Habilidad: Calcular

Link apoyo: https://curriculumnacional.mineduc.cl/614/articles-145606_recurso_pdf.pdf

(Pag 170 - 171)

1.-

A / B)	C)
$H_2 + O_2$	$O_2 \rightarrow H_2O_2$
4 mol 2 mol	2 mol X mol
1 1	
	$\frac{2 \text{ mol x } 1(H_2O_2)}{2 \text{ mol}} = 2 \text{ mol}$
"4" "2"	1(O ₂)
a) Reacti <mark>vo l</mark> imitante: Oxígeno (O ₂)	A
b) Reactivo en exceso: Hidrógeno (H ₂)	c) Se forman 2 moles de H ₂ O ₂ .


2 -

A / B)	C)
4 Al + 3 O ₂	4 Al → 2 Al ₂ O ₃
<u>24 mol</u> <u>21 mol</u>	24 mol X mol
4 3	
	$\frac{24 \text{ mol x } 2(Al_2O_3)}{24 \text{ mol x } 2(Al_2O_3)} = 12 \text{ mol}$
"6" " <mark>7"</mark>	4(AI)
a) Reactivo limitante: Aluminio (Al)	
b) Reactivo en exceso: Oxígeno (O ₂)	c) Se forman 12 moles de Al ₂ O ₃ .

3.-

A / B)	C)
F + P ₅	F → FP ₅
<u>12 mol</u> <u>14 mol</u>	12 mol X mol
1 1	
	$12 \text{ mol x 1(FP}_5) = 12 \text{ mol}$
"12" "14"	1(F)
a) Reactivo limitante: Fluor (F)	
b) Reactivo en exceso: Fósforo (P ₅)	c) Se forman 12 moles de FP ₅ .

4.-

5.-

A / B)	C) 7 O ₂ → 4 CO ₂
$2 C_2 H_6 + 7 O_2$	49 mol X mol
<u>30 mol</u> <u>49 mol</u>	
2 7	$49 \text{ mol x } 4(CO_2)$ = 28 mol
	7(O ₂)
"15" "7"	c') Se forman 28 moles de CO ₂ .
a) Reactivo limitante: Oxígeno (O ₂)	7 O₂ → 6 H₂O
b) Reactivo en exceso: C ₂ H ₆	49 mol X mol
	49 11101 - 11101
	49 mol x 6(H ₂ O) = 42 mol
	$\frac{49 \text{ Hor } \times 6(11_20)}{7(0_2)} = 42 \text{ Hor}$
	\/
	c") Se forman 42 moles de H ₂ O.

6.-

A / B)	C)
MnO ₂ + 4HCl	MnO_2 \rightarrow $MnCl_2$
12 mol 60 mol	12 mol X mol
1 4	The state of the s
	$\frac{12 \text{ mol x } 1(\text{MnCl}_2)}{\text{mol mol}} = 12 \text{ mol}$
"12" "15"	1(MnO ₂)
a) Reactivo limitante: MnO ₂	
b) Reactivo en exceso: HCl	c) Se forman 12 moles de MnCl ₂ .

7.-

A / B)	C) 3H₂ → 2Al
2AlCl ₃ + 3H ₂	18 mol X mol
<u>20 mol</u> <u>18 mol</u>	
2 3	18 mol x 2(Al) = 12 mol
The state of the s	3(H ₂)
"10" " <mark>6"</mark>	c') Se forman 12 moles de Al.
a) Reactivo limitante: Hidrógeno (H ₂) b) Reactivo en exceso: AlCl ₃	3H ₂ → 6HCl 18 mol X mol 18 mol x 6(HCl) = 36 mol
	3(H ₂) c") Se forman 36 moles de HCl.

II.- DESARROLLO:

Eje: Química

Indicador de Evaluación: Realizan cálculos para determinar reactivo limitante y posteriormente calcular la cantidad de producto formado.

Habilidad: Calcular

Link apoyo: https://curriculumnacional.mineduc.cl/614/articles-145606 recurso pdf.pdf

(Pag 172)

a)	3 O ₂ → 2 H ₂ SO ₄	b)
	15 mol X mol	<u>4,5 mol</u> x 100 = 45% de rendimiento
		10 mol
<u>15</u> i	$mol \times 2 (H_2SO_4) = 10 mol de H_2SO_4$	
3	3 (O ₂)	

2)

a)	4 Al -	→ 2 Al ₂ O ₃	b)
	36 mol	X mol	_Rendimiento real = <u>85% x 18 mol</u>
			100 %
36	5 mol x 2 (Al ₂ O ₃	$) = 18 \text{ mol de Al}_2O_3$	
	4 (Al)		Rendimiento real = 15,3 moles

3)

_3/		
a) 4HCl → MnCl ₂	b)	
45 mol X mol	7,6 mol x 100 = 67,55% de rendimiento	
	11,25 mol	
$45 \text{ mol x } 1(\text{MnCl}_2) = 11,25 \text{ moles de MnCl}_2.$		
4 (HCl)		
c)		
moles obtenidos = 65% x 11,25 mol = 7,31 moles		
100%		

4)

4)	
a) $7 O_2 \rightarrow 4 CO_2$	b) $7 O_2 \rightarrow 6 H_2 O$
31 mol X mol	31 mol X mol
$31 \text{ mol x 4 (CO}_2) = 17,71 \text{ moles de CO}_2.$	$31 \text{ mol x } 6 \text{ (H}_2\text{O}) = 26,57 \text{ moles de H}_2\text{O}.$
7 (O ₂)	7 (O ₂)
c)	d)
Rendimiento = <u>14,65 moles x 100</u>	Moles formados = <u>92,5% x 26,57 mol</u>
17,71 moles	100%
The state of the s	A STATE OF THE PARTY OF THE PAR
Rendimiento = 82,72%	Moles formados = 24,57 moles

III.- RESPONDER

Eje: Química

Indicador de Evaluación: Representan reacciones químicas en una ecuación de reactantes y productos de acuerdo a la ley de conservación de la materia.

Habilidad: Explicar

Link apoyo: https://curriculumnacional.mineduc.cl/614/articles-145606_recurso_pdf.pdf

(Pag 90; 170)

- 1.- Teoría de las colisiones: Recordemos que cuando el choque de partículas es efectivo se rompen y comienza la reacción, para provocar esto requerimos mucha energía.

 La energía disminuye a medida que avanza la reacción, por lo tanto quedarán partículas sin colisionar efectivamente debido a que no se encontrará la cantidad de energía necesaria para provocar su propia ruptura, cuando esto suceda la reacción se detendrá y la sustancia no podrá reaccionar.
- 2.- El reactivo limitante se encuentra en menor proporción estequiométrica, por lo tanto se consumirá completamente para formar sustancia nueva. De esta manera, la cantidad de producto a formar quedará dependiente de aquella sustancia que se agote primero.
- 3.- Es inválido. El reactivo en exceso se encuentra en mayor cantidad, cuando el reactivo limitante se acabe esta sustancia seguirá disponible en la reacción, por lo tanto si utilizáramos el reactivo en exceso para realizar los cálculos obtendríamos, de forma teórica, más cantidad de producto de la que se formaría en realidad.